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Abstract. Semantic technologies have proved to be a suitable foundation for in-

tegrating Big Data applications. Wireless Sensor Networks (WSNs) represent a 

common domain which knowledge bases are naturally modeled through ontolo-

gies. In our previous works we have built domain ontology of WSN for water 

quality monitoring. The SSN ontology was extended to meet the requirements 

for classifying water bodies into appropriate statuses based on different regula-

tion authorities. In this paper we extend this ontology with a module for identi-

fying the possible sources of pollution. To infer new implicit knowledge from 

the knowledge bases different rule systems have been layered over ontologies 

by state-of-the-art WSN systems. A production rules system was developed to 

demonstrate how our ontology can be used to enable water quality monitoring. 

The system is validated with simulated data, but it is developed for use within 

the InWaterSense project with real data. Its features and challenges are dis-

cussed by also suggesting the potential directions of our future works. 

Keywords: expert system, Semantic Web, ontology, SSN, Big Data, stream da-

ta 

1 Introduction 

Social networks, logging systems, sensor networks etc. are delivering huge amount of 

continuous flow of data also known as stream data. More data are produced more 

machine intelligence is required to deal with them. Streaming technologies like Com-

plex Event Processing (CEP), Data Stream Management Systems, and Stream Rea-

soning (SR) are supporting Big Data applications development. According to a survey 

[26] conducted by Gartner Inc. 22% of the 218 respondents with active or planned big 

data initiatives said they were using stream or CEP technologies or had plans to do so 

[7]. In particular, SR provides a high impact area for developing powerful applica-
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tions for analyzing stream data. State-of-the-art stream data knowledge bases are 

merely modeled through ontologies. Ontologies, in particular OWL ontologies, are 

mainly modeled in Description Logic (DL). Reasoning in ontological terms is not 

enough to express real-world application scenarios. For example, deriving new and 

implicit knowledge from ontologies is efficiently done through rule-based reasoning. 

However, layering Semantic Web rule-based DL systems, such as SWRL, over DL 

ontologies lacks the expressivity to handle some reasoning tasks, especially for the 

domain of SR e.g. finding average values [1]. A lot of research has been taken by the 

SR community to address data management and query processing on streaming data 

[4], while little efforts have been taken to address the stream reasoning inference 

problems [14]. In absence of a proper Semantic Web rule system different ones have 

been layered over stream data ontology bases. In our previous works in [1, 2], we 

have discussed about pros and cons for approaching hybrid and homogeny solutions. 

Mainly, the reasons for passing to hybrid solutions include non-monotonicity issues 

and solving complex reasoning tasks.  

InWaterSense
1
 is a R&D project for developing intelligent WSNs for WQM which 

objectives include: 

 Build a Wireless Sensor Networks (WSN) infrastructure in the river Sitnica for 

monitoring water quality with the aim of providing a best practice scenario for ex-

panding it to other surface water resources as well in the Republic of Kosovo. 

 Monitor water quality in the river Sitnica supported by the WSN in order to make 

the quality data available to the community and the decision makers for determin-

ing the current health of the river. 

 Transform the existing WSN for WQM into an intelligent platform to operate al-

most autonomously, and support more functionality as envisioned by the future In-

ternet and intelligent systems.  

In line with our project objectives, especially the later one, we have built 

INWATERSENSE (INWS) ontology framework [2], a SSN
2
-based ontology for model-

ing WQM domain. An extension of this ontology is developed for enabling identifica-

tion of the potential polluter. Moreover, an expert system, using the Java Expert Sys-

tem Shell (Jess) [11], was developed to reason over INWS ontology. Jess is a rule 

engine and scripting environment written in Java. The contribution illustrates the 

main characteristics of an expert system for WQM. Namely, it classifies water bodies 

based on observed water quality values and investigates eventual sources of water 

quality degradation. We discuss the features and challenges of this system while also 

addressing its potential improvements. Since we plan in the future to build a pure 

Semantic Web framework for WQM, we also discuss the main challenges expected 

for building such system. The Jess expert system described in this paper will then be 

compared with this system. 

The paper is organized as follows. We begin in the following section with descrip-

tion of INWS ontology model and the requirements for rule-based stream data reason-

ing. Section 3 describes the conceptual architecture of our SR framework for WQM. 
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The expert system implementation is described in Section 4, while its challenges and 

discussions together with the pure Semantic Web approach are presented in Section 5. 

The paper ends with the concluding notes and future plans. 

2 Background 

The INWS ontology framework [2] models the WSN for WQM into three modules: 

core
3
, regulations

4
 and polluters

5
. The core ontology extends the SSN ontology to 

meet the requirements for a WSN for water quality monitoring. It models WSN infra-

structure entities, observations, observation time and location and water quality pa-

rameters. The regulations ontology models classification of water bodies based on 

different regulation authorities such as Water Framework Directive (WFD) [17]. And 

finally, the polluters ontology models the entities for investigating sources of pollu-

tion.  

A typical scenario for WQM in a WSN platform is as below:  

Scenario 1. Water quality sensor probes are deployed in different measurement sites 

of a river. A sensor probe emits water quality values. We want to (1) classify the wa-

ter body into the appropriate status according to WFD regulations and (2) identify 

the possible polluter if the values are below the allowed standard.  

In order to handle the requirements of this scenario, a SR system should support 

reasoning over both streaming information and background data [20]. In particular, to 

enable efficient rule-based reasoning over stream data we address some specific re-

quirements about this property which are already mentioned in state-of-the-art sys-

tems e. g. StreamRule [28]. Namely, a SR rule systems need to support a combination 

of reasoning features like: closed-world, non-monotonic, incremental and time-aware 

reasoning.  

Since the Web is open and accessible by everyone, Semantic Web recommended 

standards (OWL and SWRL) manage knowledge bases in terms of open world as-

sumption (OWA). In OWA, if some knowledge is missing it is classified as undefined 

as opposed to the closed-world assumption (CWA) which classifies the missing in-

formation as false. In the Web, addition of new information does not change any pre-

viously asserted information which is known as monotonic reasoning. This is not the 

case with non-monotonic reasoning during which addition of new information implies 

eventual modifications in the knowledge base. In SR application domains, OWL and 

SWRL’s OWA and monotonic reasoning do not offer the desired expressivity level. 

For example, modifying the river pollution status is not allowed through SWRL rules. 

Following the SWRL’s monotonic nature a river instance firstly asserted as “clean” 

cannot be later modified as “polluted”. 

                                                           
3 http://inwatersense.uni-pr.edu/ontologies/inws-core.owl 
4 http://inwatersense.uni-pr.edu/ontologies/inws-regulations.owl 
5 http://inwatersense.uni-pr.edu/ontologies/inws-polluters.owl 



Inferring new implicit data from stream data will result in multiple CRUD opera-

tions, which in SR is known as incremental reasoning. In our case study, new coming 

sensor observation data need to be consumed quickly and together with previously 

inferred data will serve as for inferring new implicit data. 

SR systems should also include time-annotated data i.e. the time model, and like 

CEP should offer explicit operators for capturing temporal patterns over streaming 

information [20]. The INWS ontology layer implements the time model through 

OWL Time ontology
6
. Supporting temporal operators (serial, sequence, etc.) means 

the system can express the following example rule: Enhanced phosphorus levels in 

surface waters (that contain adequate nitrogen) can stimulate excessive algal growth 

[19]. If before excessive algal growth, enhanced phosphorus level has been observed 

then more probably the change of phosphorus levels has caused the algal growth. 

Thus, a sequence of these events needs to be tracked to detect the occurrence of this 

complex event. 

Moreover, in order to enable reasoning in terms of time and quantity intervals of 

continuous and possibly infinite streams the SR notion of windows need to be adopted 

for rules [13]. For example, a rule to assert which sensors provided measurements that 

are above allowed average threshold the last 30 minutes sliding the window every 5 

minutes, will be easily expressible with the help of the window concept. This has 

raised the need for a specific kind of rules in SR, namely continuous rules. Rather 

than evaluating rules against almost static ABox knowledge base as in traditional 

Semantic Web rule systems, continuous rule-based reasoning must run over dynamic 

stream data instead. With the set of new-coming data streams new logical decisions 

will arise: new information need to be published on the knowledge base or a fact 

modification/retraction need to be performed. 

3 System Architecture 

As depicted in Fig. 1, our system’s architecture consists of three layers: data, INWS 

ontology and rules layer. The RDF data (up left) and RDF streams (up right) consti-

tute the data layer (grey track). Arrows describe data flow direction. Domain specific 

ABox knowledge which does not change or changes “slowly” is formulated in the 

form of RDF data e.g. river names. RDF streams are defined as a sequence of RDF 

triples that are continuously produced and annotated with a timestamp [9]. Water 

quality measured values, annotated as RDF streams, will continuously populate the 

core ontology. In particular, a single RDF stream will hold information of observed 

water quality value, timestamp and location. The middle part of Fig. 1 represents the 

INWS ontology (green track) described in the previous section. The rule layer (yellow 

track) consists of common rules (bottom left) and continuous rules (bottom right). In 

the previous section we mentioned the concept of continuous rules which should infer 

new implicit knowledge from RDF streams.  

                                                           
6 http://www.w3.org/TR/owl-time/ 



 

Fig. 1. INWATERSENSE conceptual framework: data layer (grey track), ontology layer (green 

track) and rules layer (yellow track) 

4 Implementation 

We decided to use Jess as a platform for implementing our system of reasoning over 

the INWS ontology framework. As a production rule system, Jess supports closed-

world and non-monotonic reasoning. Moreover, it has a tight integration with Java 

through Jess’s Java API and Protégé through JessTab
7
 plugin. JessTab is a plug-in for 

the Protégé
8
 ontology editor and knowledge-engineering framework that allows one 

to use Jess and Protégé together. The system is validated with simulated data, but it is 

developed for use within the InWaterSense project with real data. 

The Jess implemented architecture of our system and its related components for 

reasoning over the INWS ontology are presented in Fig. 2. Namely, input data in their 

available format, say SQL, are transformed into RDF streams using D2RQ
9
 tool. 

SWOOP [12] is used to load the D2RQ generated RDF data and produce the abbrevi-

ated RDF/XML syntax for object property instances to be readable by Protégé [2]. 

RDF data streams are next imported into the core ontology. The set of rules for water 

quality classification based on WFD regulations are defined and may run against the 

knowledge base. Moreover, a set of rules for investigating sources of pollution by 

observing if eventual critical events appear are defined and may be activated. A sim-

ple user interface was developed using Java Swing
10

, which offers a user to monitor 

water quality based on the WFD regulations and to eventually find the possible 

sources of pollution. 

                                                           
7 http://www.jessrules.com/jesswiki/view?JessTab 
8 Protégé ontology editor, http://protege.stanford.edu/ 
9 D2RQ Accessing Relational Databases as Virtual RDF Graphs, http://d2rq.org/ 
10 http://openjdk.java.net/groups/swing/ 



4.1 The Polluters Ontology 

The INWS polluters ontology was designed based on examples of sources of pollu-

tion and the potential pollutant discharges which could arise described in [19]. Two 

classes are added: PollutionSources, describing the sources of pollution e.g. 

urban stormwater discharges, and Pollutants, representing contaminants present 

in the environment or which might enter the environment which, due to its properties 

or amount or concentration, causes harm e.g. heavy metals. A property potential-

Pollutant links individuals of PollutionSources and Pollutants (based 

on the Table on page 3 in [19]). PollutionSources class is also linked with a 

string through two properties: pollutionSourceName, representing the name of 

the pollution source, and pollutionType, representing the type of the pollution 

source which can be point, diffuse or both of them. Moreover, a property has-

SourcesOfPollution was added to relate the rivers with the sources of pollu-

tion. 

 

Fig. 2. Jess implemented architecture for WQM 

4.2 Implementation of the scenario 

To implement the Scenario 1 using our system interface, as depicted in Fig. 3, one 

should select the regulation authority i.e. WFD, select the water quality parameters 

which are to be monitored and press the button “Classify”. The JTextArea below the 

“Output” label serves for printing rules messages.  

The system offers multiple selections of water quality parameters. A simple rule is 

fired at application startup to set up the observations interval beginning time from the 

earliest time of observations streams and end time from the latest one. For brevity and 

clarity, we will demonstrate Biochemical Oxygen Demand (BOD5) observations 

WFD classification. According to WFD regulations: if BOD5 observations’ average 

value is between 1.3 and 1.5 mg O2/l then river belongs to “Good” status of oxygen 



condition, if the average is below 1.3 then river belongs to “High” status, else the 

river belongs to “Moderate” status. Expressing this rationale with Jess rules was 

done through a number of rules. Namely, a rule of primer priority creates auxiliary 

Jess facts holding BOD5 measurement values coming from the RDF streams. We 

should have used observation values directly from the ontology mappings but the Jess 

rule which calculates the average value constrains the usage of Jess facts. 

  

Fig. 3. The Jess system interface: initial view (left) and after WFD classification view (right) 

After finding the average value it is asserted as a fact into the WM. Finally, another 

rule WFDclassifyWaterBOD does the WFD classification based on the previously 

asserted average value. This rule is illustrates below: 

1 (defrule WFDclassifyWaterBOD 

2 (BODaverage (v ?x)) (CurrentInterval (v ?i)) => 

3 (if (and (< ?x 1.5) (> ?x 1.3)) then (and 

4 (printout t "Status for BOD is: GOOD" crlf) 

5 (make-instance (str-cat "GoodBODStatus" ?*r*) of http://.../inws-

regulations.owl#GoodBODMeasurement map) 

6 (make-instance (str-cat "ObservationInstantBOD" ?*r*) of    

http://.../inws-regulations.owl#ObservationInstant map) 

7 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*)  

8 http://www.w3.org/2006/time#inXSDDateTime 1 ((new Date) toString)) 

9 (slot-insert$ (str-cat "ObservationInstantBOD" ?*r*) 

10  http://.../inws-regulations.owl#hasStatus 1  

11   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)) 

12 (slot-insert$ (str-cat "http://.../inws-core.owl#" ?i)  

13   http://.../inws-regulations.owl#hasStatus 1  

14   (str-cat "http://.../inws-core.owl#GoodBODStatus" ?*r*)))) 

15 (if (< ?x 1.3) then <HIGH status classification code here>) 

16 (if (> ?x 1.5) then <MODERATE status classification code here>)) 

Code in Line 1 serves for declaring a rule definition and its name. Line 2 represent 

the left hand side of the rule while lines 3-16 the right hand side of the rule. The pre-

http://.../inws-regulations.owl#hasStatus


viously calculated average value is assigned to variable ?x while the current interval 

of observations present in the WM is assigned to ?i (Line 2). If ?x is between 1.5 

and 1.3 begin assertions for good status (Line 4-14). Namely, a message is printed out 

(Line 4); a new instance of regulations ontology class GoodBODMeasurement is 

created (Line 5) (?*r* is a global variable holding random integer numbers); a new 

instance of ObservationInstant class is created (Line 6) associated with cur-

rent date and time through inXSDateTime property (Line 7-8). This instance is also 

related with the instance created in Line 5 through hasStatus property (Line 9-11). 

Current interval instance (Line 12) is associated with the newly asserted status in-

stance (Line 13-14). The same steps presented in line 4-14 are performed for the high 

and moderate status, which are omitted for brevity (Line 15-16).  

The second part of Scenario 1 is encoded through a couple of rules. The first one 

detects newly asserted instances of moderate status i.e. instances of ModerateBOD-

Measurement class. If there is at least one instance the second rule will fire and 

find BOD5 sources of pollution discharging in the river body. An example of detected 

moderate status of BOD5 observations within a time interval is illustrated in Fig. 4. 

BOD5 sources of pollution are also listed after the user has clicked the “Find possible 

polluters” button. 

 

Fig. 4. Scenario 1 example output for BOD5 observations WFD classification and sources of 

pollution 

5 Challenges and Discussion 

In this section will be discussed the features of the Jess system and the challenges to 

be addressed for its further improvements. Meanwhile, potential future directions for 

building a pure Semantic Web rule system, such as SWRL, for WQM also take place 

in the discussion. This system is planned to support time-aware, closed-world, non-

monotonic and incremental reasoning to enable stream data reasoning. 

5.1 Continuous Rules 

The Jess system effectively identifies water quality status for the set of input RDF 

streams. Upcoming RDF streams are collected into another set of streams which in 

turn are imported into INWS ontology for rule-based reasoning. As per future works 

we plan to automate this process. Namely, RDF streams coming from SQL through 



D2RQ translation will continually populate the ontology and be automatically 

mapped into Jess’s WM. Meanwhile, with the time passing old facts will be discarded 

from the WM and be deployed into the knowledge base for future reasoning. If a class 

is mapped through JessTab command mapclass then it will place all its instances 

into the WM. This is not practical with stream data as data flow is massive and rules 

will consider a specific set (time or quantity constrained window) of RDF streams. A 

workaround solution would be to create Jess facts out of window’s selected Protégé 

instances. But this way the WM will hold Protégé instances and their one or many 

Jess facts copies. Moreover, instead of producing a query output results like in C-

SPARQL, the continuous firing of rules will continually modify the knowledge base i. 

e. do incremental reasoning. This is efficiently done through JessTab functions for 

manipulation of ontology classes and instances. However, using inferred knowledge 

between observation RDF streams sets is planned for future system improvements. 

5.2 Logic Foundation 

The core issue for building a pure Semantic Web system for stream data from which 

follow the respective expressivity constrains is the system’s underlying logic founda-

tion. Production rules and LP implementations has shown great success in the domain 

of SR. Different Semantic Web applications fall into different logic domains and pos-

sibly in a mixture of them [6]. The authors of [6] conclude that the Description Logic 

Programs (DLP) fragment should offer extension for both LP and DL. In the area of 

SR, DL reasoning fulfills the requirements for modeling the knowledge bases. When 

it comes to rule-based reasoning DL’s OWA limits the expressivity power for even 

simple reasoning tasks (e.g. counting class instances). Since LP adopts CWA ap-

proach together with non-monotonicity an LP extension of DLP, would be ideal for 

the WQM case study and stream data in general. 

5.3 Forward/Backward-Chaining and Rete Algorithm 

Inferring new knowledge in rule systems can be done in two methods: deriving con-

clusions from facts, known as forward-chaining or starting from conclusion (goal) by 

matching facts also known as backward-chaining.  

In production rule systems, matching rules with relevant facts is efficiently done 

with the Rete algorithm [9]. Executing rules through Rete algorithm means all rele-

vant facts must be loaded into the WM [3]. Considering the massive flow of stream 

data the WM will become overwhelmed. Adding here the amount of the inferred 

facts, the memory will become exhausted. With the introduction of the continuous 

rules this issue will be resolved by capturing only snapshots (time-based or count-

based windows) of streams and thus facts will enter and leave WM as needed.  

In SR applications facts are changing very often, while rules change “slowly”. 

Newly inserted facts in WM will cause rule firing. This intuitively indicates the for-

ward-chaining nature of stream data applications. Rete algorithm natively adopts for-

ward-chaining approach. However, the traditional Rete algorithm does not support 

aggregation of values in time-based windows [21]. Authors in [21] present a CEP 



system which extends Rete algorithm for supporting time-aware reasoning by lever-

aging the time-based windows and enabling calculation of complex events e.g. find-

ing average value. They have added a time enabled beta-node to restrict event detec-

tion to a certain time-frame. On the other side, Semantic Streams [22], prove that 

backward-chaining can also be enabled on stream data even though its slight modifi-

cation has been needed to produce the legal flow of data. 

5.4 Hybrid and Homogeny Stream Data Approaches 

State-of-the-art rule-based systems for reasoning over stream data mainly fall into two 

broad categories: hybrid and pure Semantic Web approaches [1]. 

Hybrid approaches layer different rule systems over ontologies like: production 

rules, CEP, LP, Answer Set Programming etc. In our previous work [1] we described 

in more detail about each approach and their pros and cons. In general, hybrid solu-

tions have achieved the desired system behavior. In these approaches the ontology is 

translated into the corresponding formalisms of the overlaying rule system. A draw-

back of this translation is that a possible loss of information may occur. For example, 

translating complex subclass statements consisting of disjunction of classes or ex-

pressed with existential quantification are not possible into Plausible Logic [5]. 

Moreover, when adding a rule a possible side-effect may occur. For example, in pro-

duction rule systems adding a rule may require extra work because of the algorithm 

used for executing the rules as depicted in [3]. This makes it harder for domain ex-

perts to write rules without IT support. In some cases (as shown in [3]) development 

layers are conflate to each other making rules maintenance more laborious. SWRL on 

the other side is declarative rule language not bound to any particular execution algo-

rithm [3]. However, equipping SWRL with non-monotonic reasoning means the order 

of rules should be taken into account [25]. StreamRule demonstrates how non-

monotonic, incremental and time-aware reasoning can be integrated into a unique 

platform for stream data reasoning. However, the continuous rule feature is imple-

mented through separate steps. Namely, stream filtering and aggregation is done 

through a stream query processor such as CQELS [29] while OClingo [30] is used to 

enable non-monotonic reasoning. 

Pure Semantic Web approaches like [23] and [24] do not make any distinction be-

tween stream and random data and lack implementation. These approaches prove that 

SWRL can be used to infer new and approximate knowledge in stream data domains. 

However, their approach does not consider incremental, time-aware and non-

monotonic reasoning. The work presented in [16] describes a Rete-based approach of 

RIF rules for producing data in a continuous manner. Although supporting time-aware 

and incremental reasoning, the approach does not deal with non-monotonic and 

closed-world reasoning. Rscale [8] is another industrially-approved reasoning system 

which leverages OWL 2 RL language profile to infer new knowledge. It enables in-

cremental reasoning, non-monotonic and closed-world reasoning through translation 

of facts and rules into SQL tables and queries respectively. However, it does not sup-

port time-aware reasoning, and as a non-Semantic Web approach follows the hybrid 

approach disadvantages. JNOMO [25] shows how SWRL can be extended to embrace 



non-monotonicity and CWA. However, inclusion of temporal reasoning is envisioned 

as per future works.  

6 Conclusion and Future Work 

The main contributions of this paper include an extension of INWS ontology to sup-

port investigation of water quality pollution sources and an expert system that uses 

INWS ontology to enable water quality monitoring.  The system’s features and chal-

lenges were discussed as lessons learned for future plans of building Semantic Web 

homogeny solution for reasoning over stream data. Our future works also include the 

evaluation of the expert system described in this paper and comparing it with the pure 

Semantic Web system. 
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